Faculty Submitting: Allison Kelly

Specify here whether "Pre" or "End" of Unit and the Unit #: Pre Unit 13

LOs: Identify weak acids and bases, conjugate pairs, rank them in terms of acidity using Kas and/or molecular structure

Lewis Acids/Bases

Describe and define the autoionization of water, pH, pOH, and the acid/base dissociation constants

Unit 13_ Question 1	Canvas Question Type: Matching
	Bronsted-Lowry Acid – A compound that donates a proton
	Bronsted-Lowry Base – A compound that accepts a proton
	Lewis Acid – A species that accepts an electron pair
	Lewis Base – A species that donates an electron pair
	Amphoteric – a species that can act as an acid or as a base
	Conjugate Pair – An acid-base pair that differs by only a proton
Read More	https://openstax.org/books/chemistry-2e/pages/14-1-bronsted-lowry-acids-and-bases
	https://openstax.org/books/chemistry-2e/pages/15-2-lewis-acids-and-bases
Unit 13_	Canvas Question Type: Fill in Multiple Blanks
Question 2	GROUP
2a	Acid [ionization] is the reaction between a Bronsted-Lowry [acid] and water
2b	Base [ionization] is the reaction between a Bronsted-Lowry [base] and water
Read More	https://openstax.org/books/chemistry-2e/pages/14-1-bronsted-lowry-acids-and-bases
Unit 13_ Question 3	Canvas Question Type: Multiple Choice
	Which of the following reactions is the autoionization of water?
	Correct Answer:
	$H_2O_{(1)} + H_2O_{(1)} \rightleftharpoons H_3O^+_{(aq)} + OH^{(aq)}$
	Wrong Answers:
	$H_2O_{(1)} + H_3O^+_{(aq)} \rightleftharpoons H_4O^{2+}_{(aq)} + OH^{(aq)}$

	$H_2O_{(1)} + OH^{-}_{(aq)} \rightleftharpoons OH^{-}_{(aq)} + H_2O_{(1)}$
	$H_2O_{(1)} + H_3O^+_{(aq)} \rightleftharpoons H_3O^+_{(aq)} + H_2O_{(1)}$
Read More	https://openstax.org/books/chemistry-2e/pages/14-1-bronsted-lowry-acids-and-bases
Unit 13_ Question 4	Canvas Question Type: Multiple Choice
	What is K _w at 25 °C?
	Correct Answer: All of the other answer choices are correct
	Wrong Answers:
	$K_a \times K_b$ (where K_a and K_b are for a conjugate pair) [H_3O^+][OH^-] 1.0×10^{-14}
Read More	https://openstax.org/books/chemistry-2e/pages/14-1-bronsted-lowry-acids-and-bases
	https://openstax.org/books/chemistry-2e/pages/14-3-relative-strengths-of-acids-and-bases
Unit 13_ Question 5	Canvas Question Type: Multiple Choice
	Choose the correct expression for K _a
	Correct Answer:
	$[H_3O^+][A^-]$
	[HA]
	Wrong Answers:
	$\frac{[H_3O^+][A^-]}{[HA][H_2O]}$
	$[H_3O^+][A^-]$
	$\frac{[HA][H_2O]}{[H_3O^+][A^-]}$
Read More	https://openstax.org/books/chemistry-2e/pages/14-3-relative-strengths-of-acids-and-bases

Unit 13_ Question 6	Canvas Question Type: Multiple Drop Down
	Acidic – [DropOne]; [DropTwo] Basic – [DropThree]; [DropFour] Neutral – [DropFive]; [DropSix]
	<u>DropOne</u>
	Correct Answer: pH < 7
	Wrong Answers: pH = 7 pH > 7
	<u>DropTwo</u>
	Correct Answer: $[H_3O^+] > [OH^-]$
	Wrong Answers: $[H_3O^+] < [OH^-]$ $[H_3O^+] = [OH^-]$
	<u>DropThree</u>
	Correct Answer: pH > 7
	Wrong Answers: pH < 7 pH = 7
	<u>Drop Four</u>
	Correct Answer: $[H_3O^+] < [OH^-]$
	Wrong Answers: $[H_3O^+] = [OH^-]$ $[H_3O^+] > [OH^-]$
	<u>DropFive</u>
	Correct Answer: pH = 7

	Wrong Answer:
	pH < 7
	pH > 7
	<u>DropSix</u>
	Correct Answer:
	$[H_3O^+] = [OH^-]$
	Wrong Answer:
	$[H_3O^+] > [OH^-]$
	$[H_3O^+] < [OH^-]$
Read More	https://openstax.org/books/chemistry-2e/pages/14-2-ph-and-poh
Unit 13_ Question 7	Canvas Question Type: Multiple Fill in the Blanks
Question 7	QUESTION GROUP
7a	A stronger base has a [larger] ionization constant than does a [weaker] base.
	The stronger the base, the [weaker] the conjugate acid.
7b	A stronger acid has a [larger] ionization constant than does a [weaker] acid.
7.0	The stronger the acid, the [weaker] the conjugate base.
Read More	https://openstax.org/books/chemistry-2e/pages/14-3-relative-strengths-of-acids-and-
	bases#CNX_Chem_14_03_strengths
Unit 13_	Canvas Question Type: Multiple DropDowns
Question 8	
	The strength of binary acids [DropOne] across a period
	The strength of binary acids [DropTwo] down a group
	DropOne
	Correct Answer: Increases
	Wrong Answer: Decreases
	DropTwo
	Correct Answer: Decreases
	Wrong Answer: Increases
Read More	https://openstax.org/books/chemistry-2e/pages/14-3-relative-strengths-of-acids-and-
	bases#CNX_Chem_14_03_AcidpH